Stability of Genomic Selection prediction models across ages and environments

نویسندگان

  • Marcio FR Resende
  • Patricio R Muñoz Del Valle
  • Juan J Acosta
  • Marcos DV Resende
  • Dario Grattapaglia
  • Matias Kirst
چکیده

Background A tree breeding program is characterized by long generation intervals which, over time, result in a much smaller number of breeding cycles when compared to annual crops. Moreover, most economically important traits in a tree-breeding program are quantitatively inherited, display low heritability and are expressed late in the life cycle. Genomic Selection (GS) is expected to be particularly valuable for tree species, leading to shorter generation intervals and improved genetic gain over time. The main factors that affect the accuracy of GS prediction models are the level of linkage disequilibrium (LD) in the training population, the training population size, the heritability of the trait and the number of QTL regulating its variation. However, it is yet largely unknown how stable prediction models are across environments and different ages. This knowledge is critical for tree breeders that wish to use genomic selection in their genetic improvement program. Here, we report the first assessment of the utility of genomic selection in a conifer species. We developed prediction models for growth traits measured at multiple sites, to evaluate the impact of genotype by environment interactions in their accuracy. Training populations were also measured over multiple ages and models were developed to assess their value in predicting breeding values later in the lifecycle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه روش های مختلف آماری در انتخاب ژنومی گاوهای هلشتاین

Genomic selection combines statistical methods with genomic data to predict genetic values for complex traits.  The accuracy of prediction of genetic values ​​in selected population has a great effect on the success of this selection method. Accuracy of genomic prediction is highly dependent on the statistical model used to estimate marker effects in reference population. Various factors such a...

متن کامل

اهمیت خویشاوندی ژنتیکی و رکورد فنوتیپی بر صحت ژنومی داده‌های جانهی شبیه‌ سازی شده با استفاده از مدل های حیوانی در حضور اثرات متقابل ژنوتیپ و محیط

The objective of this study was to investigate the role of genetic relationships between training and validation set with considering different ratio of phenotypic records of training set on accuracy of genomic prediction via animal models containing genotype × environment interactions in simulated imputation data. For this purpose, four different scenarios using 15k density containing differen...

متن کامل

Increasing Genomic-Enabled Prediction Accuracy by Modeling Genotype × Environment Interactions in Kansas Wheat.

Wheat ( L.) breeding programs test experimental lines in multiple locations over multiple years to get an accurate assessment of grain yield and yield stability. Selections in early generations of the breeding pipeline are based on information from only one or few locations and thus materials are advanced with little knowledge of the genotype × environment interaction (G × E) effects. Later, la...

متن کامل

Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat

Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to phenotype directly. We tested if using aerial...

متن کامل

Sire evaluation for total number born in pigs using a genomic reaction norms approach.

In the era of genome-wide selection (GWS), genotype-by-environment (G×E) interactions can be studied using genomic information, thus enabling the estimation of SNP marker effects and the prediction of genomic estimated breeding values (GEBV) for young candidates for selection in different environments. Although G×E studies in pigs are scarce, the use of artificial insemination has enabled the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011